Function to produce result summaries of the estimates of parameters from probability
distributions using the mle_tf
function or parameters from regression models using
the mlereg_tf
function.
# S3 method for MLEtf summary(object, ...)
object | an object of class |
---|---|
... | additional arguments affecting the summary produced. |
summary.MLEtf
function displays estimates and standard errors of parameters from statistical
distributions and regression models. Also, this function computes and displays the Z-score and p-values of significance
tests for these parameters. If limits were defined for the parameters, the standard error and other statistics are not
reported due to the transformation applied to the parameters.
Sara Garcés Céspedes sgarcesc@unal.edu.co
#--------------------------------------------------------------- # Estimation of both normal distrubution parameters # Generate a sample from the normal distribution x <- rnorm(n = 1000, mean = 10, sd = 3) # Use the summary function summary(mle_tf(x, xdist = "Normal", optimizer = "AdamOptimizer", initparam = list(mean = 1.0, sd = 1.0), hyperparameters = list(learning_rate = 0.1)))#> Distribution: Normal #> Number of observations: 1000 #> TensorFlow optimizer: AdamOptimizer #> Negative log-likelihood: 680.8125 #> Loss function convergence, 1164 iterations needed. #> --------------------------------------------------- #> Estimate Std. Error Z value Pr(>|z|) #> mean 10.01339 0.09531 105.06 <2e-16 *** #> sd 3.01389 0.06775 44.49 <2e-16 *** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1